
07COC251

A449326

Computer Controlled

Car Racing

By

Andrew Armstrong

Supervisor: Dr. C. Hinde

May 2008



Computer Controlled Car Racing Abstract

Abstract
The automated navigation and control of a remotely controlled car by a 

computer  is  a  difficult  problem to  solve.  The  task  to  have  a  system drive  a 

remotely-controlled car for a certain amount of laps of a track without assistance 

was put forward during the 2005 Congress on Evolutionary Computation (CEC), 

called the “Racing Cars” competition. The winning entry by Ivan Tanev still had to 

be assisted to get around the track successfully, requiring human assistance to 

even get around the track once.

The previous two years of projects done at Loughborough University by 

four different student tried to solve this problem. Research and investigation by 

each has proven the task to be difficult by the varied implementation problems 

found  and  solutions  proposed  by  each  student.  A  lot  of  progress  was  made 

however,  with  both  implementations  of  simulations  and  image  processing 

techniques.

This project builds on the existing projects to include sufficient rule-based 

analysis of the track done by image processing, to successfully navigate around 

and avoid, or get out of, crash situations.

Overall, the final solution proposed is a solid implementation of a reliable, 

but slow and simple navigation framework which should require no assistance to 

get around the track. In addition it provides a well structured internal model for 

the car and track. The system is also well structured, allowing it to be expanded 

into further work if deemed necessary.

Andrew Armstrong – A449326 i



Computer Controlled Car Racing Acknowledgements

Acknowledgements
These people helped tremendously directly or indirectly for various reasons, and 

all need to be acknowledged.

Chris  Hinde –  For  his  valued  supervision  of  the  project,  expert  advice  and 

suggestions.

Chris Barnard – For ideas on the initial project work, and for sharing lab time.

Christopher Carter – For the previous years work carried out in 2007, and the 

use of his code for the project base.

Scott Culcheth – For the proceeding project work from 2006 and research, and 

for the use of some portions of his code.

Richard Mee – For the construction of the parallel port interface for the initial 

project.

Thank you all.

Andrew Armstrong – A449326 ii



Computer Controlled Car Racing Acknowledgements

TABLE OF CONTENTS

ABSTRACT                                                                            ......................................................................  I  

ACKNOWLEDGEMENTS                                                                ..........................................................  II  

INTRODUCTION                                                                      ................................................................  1  
PROJECT CD-ROM......................................................................................2

LITERATURE AND RESOURCES REVIEW                                              .........................................  3  
ANALYSIS OF PREVIOUS PROJECTS.........................................................................3

SCOTT CULCHETH (2006)...........................................................................3
CHRISTOPHER CARTER (2007).......................................................................4

CEC CAR RACING COMPETITION.........................................................................4
SOFTWARE REVIEW........................................................................................5

USERPORT DRIVER....................................................................................5
PARPORT JAVA PACKAGE..............................................................................5
PARALLEL PORT VIEWER...............................................................................5

SPECIFICATION                                                                      ................................................................  6  
SYSTEM REQUIREMENTS...................................................................................6
PHYSICAL COMPONENTS OF THE SYSTEM...................................................................7

TRACK LAYOUT........................................................................................7
THE CAR..............................................................................................7
THE CAMERA..........................................................................................8

DEVELOPMENT SOFTWARE..................................................................................8
JAVA SDK AND JAVA MEDIA FRAMEWORK (JMF)...................................................8
NOTEPAD++..........................................................................................9

APPROACH TAKEN..........................................................................................9
KNOWN SYSTEM DEVIANTS..............................................................................10

DESIGN                                                                            ......................................................................  12  
DESIGN METHODOLOGY..................................................................................12
PROJECT CODE BASE....................................................................................12
IMPLEMENTATION ORDER.................................................................................12
CLASS INTERACTIONS....................................................................................14
USER INTERFACE DESIGN................................................................................16

EVALUATION OF CODING METHODS                                               ..........................................  19  
ENGINE IMPLEMENTATION AND SIMULATION SEPARATION.................................................19
STATIC CAMERA ADDITION..............................................................................20
IMAGE PROCESSING......................................................................................20

IMAGE THRESHOLDING...............................................................................20
FRAME DIFFERENCING................................................................................21
BACKGROUND SUBTRACTION.........................................................................22
SOLUTION CHOSEN..................................................................................22

INTERNAL MODEL........................................................................................23
TRACK MODELLING...................................................................................23

RECTANGLE REPRESENTATION....................................................................23
OBJECT AREA LIMIT REPRESENTATION...........................................................24
CORNER POINT REPRESENTATION................................................................24
CHOSEN SOLUTION...............................................................................25

Andrew Armstrong – A449326 iii



Computer Controlled Car Racing Acknowledgements

CAR MODELLING.....................................................................................28
POINT AND FACING ANGLE REPRESENTATION....................................................28
CAR CORNER/RECTANGLE REPRESENTATION.....................................................28
CHOSEN SOLUTION...............................................................................28

DRIVING AI.............................................................................................30
CAR CONTROL MECHANISM..........................................................................30

NAVIGATION AI.........................................................................................32
TRACK ROUTE PLANNING SYSTEM.......................................................................32

TRACK REGIONS.....................................................................................32
SIMULATED ROUTE...................................................................................32
WAYPOINTS..........................................................................................33
CHOSEN SOLUTION..................................................................................33

NAVIGATION RULES IMPLEMENTATION....................................................................34
COLLISION AND CRASH DETECTION..................................................................34
NAVIGATION RULES..................................................................................34

PWM CONTROL IMPLEMENTATION.......................................................................35
UPDATE AND PROCESSING SPEED....................................................................36

TESTING                                                                           .....................................................................  38  
INCREMENTAL WHITE BOX TESTING.....................................................................38
GLOBAL SYSTEM TESTING...............................................................................43

BATTERY CHARGE CONDITIONS......................................................................43
TEST CONDITIONS...................................................................................43
TESTING RESULTS....................................................................................44
TESTING EVALUATION................................................................................45

CONCLUSIONS                                                                     ...............................................................  46  
PROJECT SUCCESSES.....................................................................................46
PROJECT IMPROVEMENTS.................................................................................46
PERSONAL ACHIEVEMENTS................................................................................47

FUTURE WORK                                                                    ..............................................................  48  
CONTROL IMPROVEMENTS................................................................................48
ALTERNATIVE TRACK LAYOUTS...........................................................................48
NAVIGATION IMPROVEMENTS.............................................................................48
MULTIPLE CARS..........................................................................................48
COMPLETION OF SIMULATION.............................................................................48
GENERAL IMPROVEMENTS.................................................................................48

FINAL CONCLUSIONS                                                              ........................................................  49  

REFERENCES                                                                       .................................................................  50  

APPENDICES                                                                       .................................................................  52  
APPENDIX A: KEY CODE AND FORMULAE................................................................52

PROJECTED POINT....................................................................................52
KEY CODE SAMPLES.................................................................................53

HORIZONTAL SCANLINE ALGORITHM..............................................................53
FIND INITIAL CAR LOCATION....................................................................54
NAVIGATION DECISION...........................................................................56

APPENDIX B: DRIVING AI LOOP FLOW DIAGRAM......................................................61
APPENDIX C: OBJECT DETECTION ANGLES..............................................................63
APPENDIX D: GUI FUNCTIONALITY.....................................................................64
APPENDIX E: CRASH TESTING RESULTS.................................................................67

Andrew Armstrong – A449326 iv



Computer Controlled Car Racing Introduction

Introduction
The project concept originated in 2005 from the Congress on Evolutionary 

Computation  (CEC)  (Essex,  2005i),  during  the  “Racing  Cars”  competition.  Dr. 

Chris Hinde brought the project to Loughborough University in 2005, and four 

students have worked on it previously.

In the 2005/2006 academic year, two MComp Computer Science students 

undertook the project, one of which was Scott Culcheth  (Culcheth, 2006). Their 

goal was to build a system capable of driving a remote control car around a track, 

and in addition  to  extend it  to  include  autonomous AI  to  navigate  the track, 

possibly including learning to improve the performance over many laps.

However,  this  proved  difficult  as  controlling  the  car  by  itself  proved  a 

challenge  and  no  AI  was  added  to  their  projects.  Therefore,  in  2006/2007, 

Christopher Carter  (2007) took the project  further by looking to implement  a 

system capable of driving a remote control car around a track without human 

assistance.

This proved a success, since Carter managed to implement a simulation 

and a list of commands to send to the car which could get the car around the 

track without  human assistance  for  one lap.  With  this  in  place it  was proved 

automated control or AI could be added to navigate the track.

Therefore, the aim of this project is to continue the aim of controlling the 

car  without  human assistance,  with  the  additional  aim to  recover  from crash 

situations which both Culcheth and Carter detailed as an important area of future 

work.

Aim: To develop and implement a system which is capable of manoeuvring  

a remote control car around a track while doing automated crash avoidance and  

recovery without human assistance.

Andrew Armstrong – A449326 1



Computer Controlled Car Racing Introduction

Project CD-ROM
Included with this text is a CD-ROM with resources related to the project. 

Included on the disk are:

● A  copy  of  this  document  in  OpenDocument  (.odt),  Microsoft  Word 

(.doc), and Portable Document Format (.pdf) formats

● The program source code files and instructions for use

● The UserPort program for allowing programs access to parallel port pins

● Videos  of  the  final  car  performance,  and  for  comparison  the  “Ivan 

Assisted” CEC 2005 winner video (Essex, 2005ii)

Andrew Armstrong – A449326 2



Computer Controlled Car Racing Literature and Resources Review

Literature and Resources Review
This project continues the work of two years of previous projects. Two of 

the four projects are the main source of information, since they provided the base 

system code and between them done a great amount of investigation into the 

project already. Additionally, software that was used in this project, or used in 

the system by previous projects is reviewed.

Analysis of Previous Projects
The two projects which work was continued from were Culcheth  (2006) 

and Carter (2007) both called “Computer Controlled Car Racing”.

Scott Culcheth (2006)

The initial work in 2006 provided the base of the project and an excellent 

overview of the problems involved. Part of Culcheth's investigation went towards 

creating the physical track, deciding on the camera settings use and also the car 

configuration. The track was painted matte black, and the camera's height and 

lighting  conditions  were  tested  to  gain  the  best  results  for  the  system.  The 

camera itself was setup to see all the track in the best possible way. The car's 

choice of tyres, and motor configuration was thoroughly tested, and the results 

from both were kept through Carter's project.

The project additionally made a lot of progress with image analysis and 

recognition, analysing the usefulness of several techniques. He details the use of 

image thresholding, background subtraction and frame differencing, noting the 

uses of each to different situations. Attention was given to the run time of the 

techniques  noting  while  the  accuracy  could  be  improved  by  additional  image 

filters, the time used to run them would be highly impractical since the system is 

meant to run in real time.

The control of the car, with a unfinished example of how to have the car 

navigate  the  track,  is  also  provided.  Pulse  Width  Modulation  (PWM)  is  fully 

explained to give precise control of the actions sent to the car. The use of PWM 

was  improved  by  having  left-right  steering  independent  from  the  forwards-

reverse pulse, to improve the turning of the car due to gliding after the forwards-

reverse pulse was sent.

Andrew Armstrong – A449326 3



Computer Controlled Car Racing Literature and Resources Review

Finally, the report details the system Culcheth created by the use of class 

diagrams, making the report extremely useful when adapting parts of the system 

for further use. An explanation for the use of Java is also given, with respect to 

the interaction with the web camera and the use of object orientated code.

Christopher Carter (2007)

The project completed by Carter in 2007 made a divergence from the use 

of the web camera to analyse the track. Instead, effort was made to achieve a full 

lap of the track with no assistance by implementing a simulator. The simulator 

would control the car by using an input list of  instructions, but work with it's own 

measurements to test the car for crashes.

Additional  testing  was  done  to  some  areas  which  Culcheth  had  lacked 

detail on, such as the connection of the camera to the PC and the exact sizes of 

the  track.  The implementation  itself  provides  detail  on  the  exact  turning  and 

distance measurements recorded and used in the simulator.

Although this project did not continue the work of the simulator, Carter 

also improved the system code inherited from Culcheth, and provides a good set 

of class diagrams and information on the system layout. This proved valuable in 

adapting the project for further work.

CEC Car Racing Competition
The  competition  was  run  in  2005  by  the  University  of  Essex  (Essex, 

2005ii). The aim of the competition was to develop the most effective system to 

remotely control a car around a track for 10 laps. The 2005 winner was Ivan 

Tanev (Essex, 2005i), who provided a system which completed 10 laps but only 

with a high amount of human assistance, although it was more sophisticated and 

able compared to other entries.

Andrew Armstrong – A449326 4



Computer Controlled Car Racing Literature and Resources Review

Software Review

UserPort Driver

Figure 1 - UserPort 1.0 interface

The  UserPort  driver,  available  from  the  CEC  competition  website 

(University  of  Essex,  2005i),  unlocks  parallel  port  addresses  for  use  with 

programs  on  the  system.  As  previous  projects  have  investigated,  it  is 

recommended  to  unlock  only  the  ports  required  due  to  the  security  risks 

(Culcheth, 2006).

ParPort Java Package

Previous projects (Carter, 2007) have gained access to the parallel port by 

use of the ParPort Java Package, which contains the required DLL file. This was 

attributed originally to Juan Portillo, available on his website (Portillo, 2005)

Parallel Port Viewer

The  Parallel  Port  Viewer  was  integrated  into  Carter's  project  (Carter, 

2007), and is a application to communicate to the parallel port, making use of 

both ParPort and UserPort. The original viewer is available on the Planet Source 

Code website  (Margold, 2004), which allows direct manipulation of the parallel 

port pins states.

Andrew Armstrong – A449326 5



Computer Controlled Car Racing Specification

Specification

System Requirements
To  complete  the  project  aim,  the  car  is  required  complete  laps  of  a 

rectangular  track built to the original CEC “Racing Cars” competition standard. 

The car and track can be viewed by the webcam setup on a gantry directly over 

the  track.  The  car  is  controlled  using  the  cars  own  remote  control  system, 

connected via parallel port to the PC running the system. The track and gantry 

was optimised for the system by previous projects  (Culcheth, 2006 and Oyns, 

2006).  The original  hardware specifications  can be found on the CEC website 

(University  of  Essex,  2005i).  The  controller  was  adapted  by  Richard  Mee 

(Loughborough University, 2005).

The  projects  completed in  2006 concluded  with  the analysis  of  several 

problems that still needed resolving to complete the core aim of track navigation. 

While several problems were solved, such as car and track detection, the results 

still couldn't match the CEC “Racing Cars” competition system winner provided by 

Ivan Tanev (Doshisha University, Japan). A video of the winning laps is available 

on  the  CEC  competition  website  (University  of  Esex,  2005ii).  Tanev's  entry 

required a high amount of human intervention to succeed at navigating the track, 

despite  having  a  better  turning  circle  then  this  project's  own car.  Two  large 

problems  identified  were  the  navigation  out  of  crashes,  and  the  reliability  of 

finding the car's location and facing.

In 2007 the project (Carter, 2007) identified the area of simulation as an 

area which required work. He succeeded at building a reliable simulator and a set 

of instructions that could be followed by the car to do a successful lap of the track 

without human intervention. It was still identified that the car could not complete 

more then a few laps without human intervention due to the known accuracy 

limits of the simulation. It was still accepted that the car racing had more work to 

be done, since the project did not use the camera at all and used only a pre-set 

list of instructions.

Andrew Armstrong – A449326 6



Computer Controlled Car Racing Specification

Physical Components of the System

Track Layout

The track is the same as the design used in the 2005 CEC competition, and 

was constructed by Dr Chris Hinde (Hinde, 2005). The design is detailed on the 

CEC competition website (University of Essex, 2005).

The track originally used the brown finish it was completed with, but the 

initial 2006 project work (Culcheth, 2006 and Oyns 2006) discovered that using a 

greater  contrast  of  colour  between  the  track  and  walls  would  improve  the 

detection  of  the  car  and  track.  The  track  was  therefore  painted  matte  black 

(which additionally avoids reflection) with white barriers. The track as used during 

the project is shown in figure 2.

The track layout consists of a rectangle track area, with a centre barrier 

dividing it in half. A chicane comes down from the centre “top” wall, and the car 

starts just between the chicane barrier and the centre barrier. Direction of travel 

around the track is clockwise.

Figure 2 - Webcam photo of the track from a top-down perspective on the 

gantry.

The Car

The car is a standard Nikko brand 1/24 scale Mini Cooper Sport. The main 

colour is yellow and white, which contrasts well with the black track. There are 

optional motors and tyres, which were investigated by Culcheth (2006), and were 

not altered for this project. The car takes 3 standard AA batteries.

Andrew Armstrong – A449326 7



Computer Controlled Car Racing Specification

The car in previous projects used a right steering bias (Culcheth, 2006 and 

Carter 2007) due to the clockwise direction of travel. This was set to neutral for 

the project  since  reverse and left  travel  were used frequently,  and right  bias 

would have added additional  calculations to determine which direction the car 

would be heading.

The car is controlled using the native remove control provided, which is 

connected to the parallel port of the PC running the system. This takes a single 

9V battery for operation. This Nikko range of cars can also uses the frequencies 

40MHz and 27Mhz, which would allow a second car and controller to be added. 

Although  this  was  not  investigated  during  the  project  it  is  a  future  task  to 

investigate.

Fig. 3: The Car Fig. 4: The controller connected to 

the parallel port.

The Camera

The camera used is a standard wide-angle webcam, connected by USB to 

the PC running the system. The wide-angle functionality, when set to letterbox 

mode as seen in figure 2, allows the entire track to be in focus if at a reasonable 

height on the gantry. Investigation into other camera settings were performed in 

previous years (Culcheth, 2006), with letterbox mode being the preferred choice.

Development Software

Java SDK and Java Media Framework (JMF)

The project  has in  previous years  used Java 1.6.0  and the Java Media 

Andrew Armstrong – A449326 8



Computer Controlled Car Racing Specification

Framework  2.1.1.  During  the  first  project,  Culcheth  (2006) details  this  was 

because of the usefulness of the JMF to interact with the web camera. The use of 

Java also allowed generally quick implementation of classes and features such as 

the required threading of the camera and running command processes, and is 

familiar.  In  addition  there  is  a  large  amount  of  available  examples  and code 

samples for the language available, one of which was used for Culcheth's original 

project base (Bull, 2004). The use of Java has been continued to make use of the 

previous projects work, since this  project makes use of two projects previous 

systems code (Culcheth, 2006 and Carter, 2007).

Notepad++

The use of a design studio was not necessary and evaluated in previous 

projects (Culcheth, 2006), where the use of an development IDE was not suitable 

due to the small amount classes used in the system. Notepad++ (HO, 2008) was 

chosen since it allowed tabbed file browsing, syntax highlighting, shortcuts for 

compilation and was very familiar.

Approach Taken
The  2006  projects  (Culcheth,  2006  and  Oyns,  2006) laid  out  several 

targets for  the project,  the main one being a similar  aim to that  of  the CEC 

competition, to have the system perform unassisted car laps. The 2007 project 

investigated  (Carter,  2007)  approached  this  problem  by  creating  a  simulator 

instead of continuing image processing and web camera work.

After a talk with Dr Chris Hinde and Chris Barnard in preliminary meetings, 

it was decided to take forward the original design of using the web camera to 

provide a system that could navigate the track. Specifically, I took on board the 

problem of crash analysis and recovery, which I incorporated into my aim.

While  the  simulation  approach  (Carter,  2007) proved  successful  at 

accepting a list of actions and executing them effectively, it had difficulty going 

around the track more then twice. The main approach therefore was to accept the 

simulation was useful but to not expand on its functionality, instead making use 

of the image analysis techniques in the 2006 projects (Culcheth, 2006).

The approach of live image analysis lends itself to being perfect for either 

simple  rules  to  govern  car  movement  or  the  use  of  artificial  intelligence 

Andrew Armstrong – A449326 9



Computer Controlled Car Racing Specification

techniques to allow the system to learn. Out of these two options, the rules based 

approach was chosen, to both simplify the coding and to make it reliable to test. 

This was the approach chosen by Culcheth (2006), from his initial work into the 

area of tracking and navigation.

While  general  rules  could  be  difficult  to  apply  to  a  complex  track,  the 

system is only required to navigate a relatively simple course. Additional rules to 

govern the crash situations and general problems with moving around obstacles 

would allow more complex rules or artificial intelligence algorithms to be added in 

future work on this project.

To allow the system to perceive the track, the use of an internal model to 

store the locations of the wall and obstacles would be required, as well as to store 

the  cars  location  and  facing.  A  similar  storage  of  an  internal  route  planning 

system would be needed, to allow the car to find its way accurately around the 

track.  Without  these,  the  overhead  from  checking  the  camera  for  all  the 

information every update would stop the program working effectively (Culcheth, 

2006).

The system was created in Java, allowing the use of previous projects as a 

base for the GUI and camera systems. Changing the language would have been 

counter-productive and lose the existing systems implementations and code for 

reuse.

Known System Deviants
Both  previous  years  have  identified  several  inconsistent  variables 

(Culcheth, 2006 and Cater, 2007). These need to be taken into account by the 

system to maintain the reliability, so reasonable allowances are made for:

● Changes in lighting conditions

● Battery life

● Tyre grip and track surface

● System latency between requesting an image and processing it

● Processing overhead from other  processes running on the PC,  and the 

general speed of the PC itself

Out of these issues, the latency and speed of the PC were significant in the 

previous project (Carter, 2007), which produce a lack of synchronisation between 

Andrew Armstrong – A449326 10



Computer Controlled Car Racing Specification

the system knowledge and the real-world events. This was taken into account by 

the use of a delay in the navigation loop to allow the general overhead to be less 

of a problem, and to allow the car to stop moving before picking up its position. 

The rules were also altered to reflect these choices.

Lighting conditions affect the web camera heavily if  the lights  are dim, 

which are easily solved by having the lights on when the system runs, and have it 

taken into account by the image processing. Battery life can affect the distance of 

each  pulse,  although  affected  the  system  less  due  to  the  use  of  rules  to 

determine behaviour. However if the car ran down the batteries, the movements 

might be too small and so navigation would prove impossible. Therefore, batteries 

were replaced frequently so to not hamper the cars movement.

Andrew Armstrong – A449326 11



Computer Controlled Car Racing Design

Design

Design Methodology
For the project, inspiration on how to implement the required features was 

taken from the past projects. After analysis of the previous years, it was obvious 

iterative  design  and  testing  was  the  most  appropriate  for  the  system.  This 

allowed the design to be planned and prototyped quickly, by keeping the parts of 

the design generally separate or only relying on the previously constructed parts. 

Testing was done as the project progressed, with earlier systems being tested for 

compatibility with newer ones and integration of features happening when they 

were added. Different options were evaluated before implementation, as detailed 

in  the Evaluation  of  Coding Methods section.  The iterative  testing  and design 

changes are detailed in the Testing section.

Project Code Base
As identified in the aim of the project, there will be no further work made 

on simulating the track since a great amount was completed by Carter  (2007). 

However, the program improvements to the class design and GUI made by Carter 

made it worthwhile to further expand his project and keep his existing simulation 

code in unaltered.

Since Carter had removed several important parts of Internal Model and 

Image  Processing,  it  is  necessary  to  re-implement  them.  The  work  done  by 

Culcheth (2006) includes a lot on modelling and image processing, and much of 

this is reused where possible.

Implementation Order
The  use  of  iterative  design  requires  separating  tasks  into  stages  of 

incremental  development.  Earlier  stages  are  required  for  later  stages  to  be 

implemented,  so  the order  of  these  are  important.  The  implementation  order 

used in the project is outlined in the table shown in figure 5. 

Andrew Armstrong – A449326 12



Computer Controlled Car Racing Design

No
.

Stage Sub-Stages New code / 
modified from

1 GUI redesign i. Plan GUI changes to make to 
existing GUI

ii. Resize simulation, split GUI in half, 
resize existing panels to fit

iii. Implement new buttons and 
placeholder panels

Modified from Carter 
(2007) project work.

2 Engine 
implementation

- Partially modified code 
from Carter (2007).

3 Simulation 
Separation

i. Remove all GUI control 
functionality from the simulation 
classes, move to Engine

ii. Rename simulation classes to 
better segregate code

Modified most of the 
work done by Carter 
(2007), to separate 
the functionality from 
new code.

4 Static camera 
addition

- Uses a modified copy 
of existing live camera 
code (Carter, 2007).

5 Image Processing i. Implement image processing 
classes and controls from 
Culcheth's work

ii. Evaluate the most appropriate way 
to finding the track

iii. Evaluate the most appropriate way 
to find the car when it is on the 
track

iv. Evaluate the most appropriate way 
to find the car's facing

Partially implemented 
from code in Culcheth 
(2006) project. New 
code for the car facing 
needs to be evaluated.

6 Internal Model i. Setup model structures and 
functions for the track

ii. Add image algorithms to search 
for the track barriers and obstacles

iii. Setup car structure
iv. Add image algorithms to search 

for the car, and find it's facing
v. Add algorithm to determine if a 

location is in a barrier or wall

New code, although 
inspiration taken from 
Culcheth's (2006) 
internal model.

8 Driving AI i. Implement new class to handle the 
driving loop to control actions sent 
to the car

ii. Integrate car control via. parallel 
port

Parallel port code from 
existing project 
(Carter, 2007)

9 Navigation AI i. Implement control class to handle 
navigation rules

ii. Integrate internal model updates 
into class as needed information

New code

7 Track Route 
Planning System

i. Investigate suitable solutions to 
finding routes around the track

ii. Implement solution, adding in 
interfaces with the navigation AI

New code

Andrew Armstrong – A449326 13



Computer Controlled Car Racing Design

11 Navigation Rules Add rules to determined best new 
action to take considering information 
available
i. Require the rules to move towards 

next waypoint
ii. Take into account crash situations

New code

12 Driving PWM 
code

i. Add full PWM in a thread loop to 
take into account navigation rule 
decision

ii. Test and tune PWM timings

PWM design from 
existing projects 
(Culcheth 2006, 
Carter 2007)

13 Final testing of 
crash recovery 
and laps

i. Final code and system testing
ii. Testing and evaluation of 

performance with laps and crash 
recovery

New code

Figure 5 – Implementation Order Table

Class Interactions
The different sub-systems were designs in their own classes to implement 

the required functionality. Since the program is based upon past simulation code 

by Carter  (2007), this was put into it's own simulation section early on in the 

project, and all new program functionality run under a different class hierarchy. 

This also simplified the class diagram. The different systems are outlined in figure 

5 below.

As noted in figure 6, the system developed by Carter is not shown in full, 

with only  the entry class  being referenced.  The entire simulation  system was 

separated from the rest of the program and left unaltered. Since the simulation is 

not  being developed during this  project,  it  would  have taken up unnecessary 

space to explain its full functionality. Details of its implementation can be found in 

the project report (Carter, 2007).

The  new  hierarchy  allows  a  clear  set  of  communications  between  the 

navigation and modelling classes, with much shared functionality coming from the 

vision system.

Andrew Armstrong – A449326 14



Computer Controlled Car Racing Design

Figure 6 – Class Interaction Diagram.

Andrew Armstrong – A449326 15

BackgroundSubtracter

ImageThresholder

FrameDifferencing

Image Processing

Track Car

Coordinate

Internal Model

DriverAI

NavigationAI

Navigation

Utility

FollowCarTest

Utility and Tests

SimDraw

Simulation

CarAIMain

Engine

JImagePanel

JImagePanelStatic

GUI

ImageUpdateListener

ImageGrabber CameraController

Webcam

Camera

CameraImageStatic

CameraImage

Camera

ParallelPort

Parallel Port

PPVParallelPort

Package
ParPort

Package
PPV

PortViewerPanel

BitField Led

Class

Entry ClassSimulation system 
documented by Carter 

(2007) Physical

Key
Static Class

Interface



Computer Controlled Car Racing Design

User Interface Design
The user  interface was  originally  inherited  from Carter's  (Carter,  2007) 

project shown in figure 7, and so was designed around the simulation of the track 

with  no  image  processing  needed.  This  was  modified  to  add  the  necessary 

functionality for image processing and navigation AI.

Figure 7 – Initial GUI state from Carter's (2007) project

Andrew Armstrong – A449326 16



Computer Controlled Car Racing Design

The  plan  to  change  the  interface  was  based  around  adding  additional 

controls, and therefore necessitating the resizing of the simulation. It was decided 

to partition the GUI into two halves, and further divide it up into specific container 

panels. The initial plan for this is shown in figure 8.

Figure 8 – GUI design mockup

The original code had the camera resized, and the simulation track taking 

up the major part of the GUI. To allow more features to be added, the simulation 

was resized to half the original, and the GUI was split into two halves. The left 

half held the simulation image, two camera panels (one was purely for debugging 

while one is the live image), and image processing controls. The right held the 

simulation controls,  AI controls and debugging panels.  The final  GUI design is 

shown below in figure 9. More detailed information on the final interface controls 

are described in detail in Appendix D.

Andrew Armstrong – A449326 17

Simulation Panel

Live Camera and 
Static Camera Panel

Image Manipulation Control Panel

Simulation and AI
Controls/options Panel

Parallel Port Viewer and
Simulation Key

Text Feedback Panel



Computer Controlled Car Racing Design

Figure 9 – Final GUI

Andrew Armstrong – A449326 18



Computer Controlled Car Racing Evaluation of Coding Methods

Evaluation of Coding Methods
As  noted  in  the  previous  project  (Carter,  2007),  it  was  necessary  to 

evaluate all the available methods to code the project since no standard solution 

to  the  given  problems.  However,  several  problems  have  existing  solutions 

explored in previous projects (Culcheth, 2006 and Carter, 2007), which is noted 

and  referenced.  In  these  cases,  the  evaluation  was  made  much  easier.  The 

sections  are  in  order  of  implementation,  and  also  evaluate  the  design  and 

structure decisions of the system.

Engine Implementation and Simulation Separation
It  was decided immediately  on starting  to  alter  the functionality  of  the 

system provided by Carter's (2007) project code. The simulation was the core of 

the system and to work on additional  interfaces needed segregating from the 

project  code.  To  best  achieve  this,  the  class  originally  called  DrawSim  was 

renamed SimDraw, and a new Engine class was added to handle GUI actions, 

such  as  button  presses  and  slider  changes.  Additionally,  the  entry  class 

Simulation  was  renamed  CarAIMain,  although  the  functionality  was  relatively 

unchanged.  The  main  addition  to  the  CarAIMain  class  was  logging  functions, 

including saving logs to a file.

The simulation classes then were all renamed to properly segregate them 

from the rest of the system. The prefix “Sim” was chosen since several classes 

were already named with the prefix. The details of name changes are listed in 

figure  10.  Apart  from these changes,  and  the  aforementioned resizing  of  the 

simulation display, the simulation system was left as it was.

Andrew Armstrong – A449326 19



Computer Controlled Car Racing Evaluation of Coding Methods

Original Class Name New Class Name

Simulation CarAIMain

Action SimAction

ActionHandler SimActionHandler

Car2D SimCar2D

Car SimCar

CarControl SimCarControl

DrawSim SimDraw

Navigator SimNavigator

TestCrash SimTestCrash

TrackArea SimTrackArea
Figure 10 – Simulation Classes Name Changes

Static Camera Addition
It was noted that a requirement of the GUI was to add a functional location 

to store static camera images. This was to aid debugging of the main camera 

while not overwriting the independently updating image.

This was simply implemented using a copy of the JImagePanel class, called 

JImagePanelStatic, and the CameraImage class, called CameraImageStatic. Both 

were very similar to the live counterparts, however, the CameraImageStatic class 

only allowed updates from within the program and had all  the camera related 

functionality removed.

Image Processing
Previously, Culcheth  (2006) had investigated several methods of car and 

track identification, which were image thresholding, background subtraction and 

frame differencing. The methods were re-implemented with some changes into 

the program and then evaluated.

Image Thresholding

A threshold can be applied to the webcam image to detect the track, as 

stated by Culcheth  (2006).  This  provides a binary image of black  (empty)  or 

green (full) pixels. The track is black, so this was detected by applying threshold 

values of red = 140, green = 140, blue = 140. In good lighting conditions this 

found the track area, and if the threshold needed adjusting, the sliders Culcheth 

(2006) had  implemented  were  added  to  the  new  program.  The  results  of 

Andrew Armstrong – A449326 20



Computer Controlled Car Racing Evaluation of Coding Methods

thresholding the track can be seen in figure 11, where it correlates to Culcheth's 

analysis and easily makes the track seen.

Figure 11 – Image Thresholding applied to empty track

Frame Differencing

The movement of the car needs to be detected and frame differencing is 

the method to detect changes between images. The original implementation by 

Culcheth (2006) was implemented and refined for use in the program.

Originally,  Culcheth  used  frame  differencing  to  detect  the  the  changes 

between two frames where the car was already present. This caused some error 

when the care barely moved or had crashed, and no car was detected on the 

track. To solve this problem, frame differencing was used on images which had 

thresholding applied to them already, the original of which had the track detected 

with no car present. This is shown in figure 12 and 13.

Andrew Armstrong – A449326 21



Computer Controlled Car Racing Evaluation of Coding Methods

Figure 12 – Live image to be tested Figure 13 – Frame difference 

between current image after 

thresholding, and previously stored 

threshold image of the track

Background Subtraction

This  is  a  special  technique  of  frame differencing,  and  was  investigated 

using Culcheth's original implementation. Background subtraction will check the 

difference between two live  image  frames and detect  changes  in  pixels  by  a 

certain  amount.  However,  obviously,  lack  of  movement  by  the  car  meant  a 

background subtracted image did not provide any feedback. This was tested with 

frame differencing and similar problems occurred.

Solution Chosen

Since the results from frame differencing two threshold images was very 

satisfactory,  there  was  no  need  to  use  background  subtraction  to  detect  the 

differences  between a  past  reference  image  and  the  current  live  image.  This 

however was kept in the project for debugging, although is unused in the final 

implementation.

The final solution therefore used image thresholding to detect the track, 

and then this stored image and frame differencing to detect the location of the 

car. The major advantage of this method over background subtraction was the 

detection  of  the  stationary  car  in  all  tests.  This  solution  can  also  detect  any 

obstacles on the track, although the system does not take them into account a 

future implementation could take advantage of the threshold images.

In addition, the frame differencing and thresholding suffered less from the 

Andrew Armstrong – A449326 22



Computer Controlled Car Racing Evaluation of Coding Methods

effects  of  camera  movement  and  poor  or  changing  lighting  conditions  then 

background subtraction, as noted by Culcheth (2006).

Internal Model
The  storage  of  the  track  internally  is  done  to  reduce  overhead  of 

processing,  since  it  doesn't  need  to  gather  track  information  each  frame.  In 

addition,  the  car  is  difficult  to  analyse  as  a  collection  of  image  pixels,  so  a 

representation of it is required. This internal model in Culcheth's (2006) original 

implementation  was partially  successful  at  representing  and finding  the track. 

However, it was not full proof and was prone to some errors which should be 

avoided, since the internal barriers of the track were inaccurate.

Track Modelling

Rectangle Representation

Individual obstacles could be modelled as rectangles or shapes, for each of 

the walls or areas on the track. This is advantageous if the objects have definite 

edges, and if modelled as rectangles use up very little space in memory. They are 

also easy to use for collision detection since the area defined as obstacle is  the 

entire area.

Accuracy is lost on exact edges of objects however, due to camera angles 

and non-perfectly square obstacles. This usually is not a problem due to the car 

wanting to avoid obstacles entirely, so additional buffer space around an obstacle 

can be a welcome addition.

Figure 14 – Example Diagram of Individual Objects

Andrew Armstrong – A449326 23



Computer Controlled Car Racing Evaluation of Coding Methods

Object Area Limit Representation

Similar to modelling individual objects, the limits of the obstacles could be 

modelled. This is much more advantageous for the walls, since they only have 

one side and do not require a width. For obstacles on the track it is less useful.

This method also relies on the camera being perfectly  aligned with the 

track  horizontally,  since  it  allows  no  angles  for  the  obstacles.  This  can  be 

acceptable since, like with rectangle object representation overlapping parts of 

the valid track, the car will seek to avoid obstacles so the small amounts of valid 

track which are set to an obstacle will just be ignored.

Figure 15 – Example diagram with limits applied to represent the walls 

and obstacles

Corner Point Representation

A more complex solution to modelling the track could be to find the corner 

points of an object to store, providing accuracy if the camera is at an angle, and 

usually better accuracy along lines for only having the obstacle represented and 

none of the track overlap. This method is difficult to apply, since it requires more 

complex collision detection since lines may be at an angle, but is more accurate 

overall.

Andrew Armstrong – A449326 24



Computer Controlled Car Racing Evaluation of Coding Methods

Figure 16 – Example of track walls possible representation by corner 

points

Chosen Solution

All  three  of  the  methods  described  can  accurately  portray  the  track, 

although the corner point representation is the most accurate. However, it also is 

the most difficult to implement reliably, since the camera is prone to providing 

poor data to find the corner points of obstacles and walls and the algorithms to 

implement the system are troublesome, as shown in Culcheth's project  (2006). 

The collision  detection also  is  harder, and slower  to  perform then using right 

angle representations.

Therefore  a  mixture  of  obstacle  area  limits  and  rectangle  object 

representation were chosen. The obstacle area limits were used to represent the 

track and internal walls. Internal walls representation was added since the track 

area might contain areas of the wall, and the internal walls can more accurately 

portray areas the car cannot go. However, both are required since the can could 

possibly hit the wall area and if that was the only representation, the car finding 

algorithm might fail. as seen in the comparison figure 16 below.

Andrew Armstrong – A449326 25



Computer Controlled Car Racing Evaluation of Coding Methods

Figure 17 - Comparison of Track (in red) and Walls (in blue).

The boundaries of the track are the extreme points where there is no more 

valid track area. This uses a simple scanline algorithm, the horizontal version is 

available in the code sample figure 36, in Appendix A. The final result of the track 

limit representation is shown in Figure 18.

A special note must be made that by using the more accurate Pan and 

Scan camera mode, it appears as if track is available at the top and bottom of the 

image. This can stop the left and right track limits appearing correctly, since there 

would be no line made up of 100% black pixels. To sort this problem, the top and 

bottom limits were acquired first then used for the left and right limits.

Figure 18 – Track limit representation

 In contrast, the walls are determined to start when there is no overlapping 

Andrew Armstrong – A449326 26



Computer Controlled Car Racing Evaluation of Coding Methods

wall with the track, by doing a scan of horizontal or verticle lines again, but with 

an 80% tolerance for track area, meaning it requires more then 80% of a scan 

line to be track for it to be considered part of the track. This is shown in figure 

19.

Figure 19 – Internal Wall representation

Both of these models were created in the Track class, with all  relevant 

functions to determine their location implemented as methods. In addition, the 

track limits were incorporated as an optimisation to further image analysis of the 

track, since we know that anything outside the limits is useless information. All 

other image analysis done after the track is found uses the track limits to speed 

up efficiency.

The chicane and barrier were represented as rectangles. To find them, the 

areas of black which represented them on the threshold image were estimated by 

checking the track limits. The largest limits of these areas were determined, and 

stored. The final representation of these obstacles can be seen in figures 20 and 

21 below.

Andrew Armstrong – A449326 27



Computer Controlled Car Racing Evaluation of Coding Methods

Figure 20 – Centre barrier detected Figure 21 – Chicane detected

Car Modelling

Point and Facing Angle Representation

A standard way to model the location of  something is  to take its most 

centre  point  and store  it  as  a  location.  Because this  doesn't  show its  facing, 

additionally an angle coordinate or the location of the front of the object must 

also  be  stored.  This  has  the  ease  of  allowing  the  system simple  calculations 

between the centre point and any location it has to reach, however it doesn't 

allow for the precision detection of crash situations when the corner of the car 

might be stuck on some obstacle.

Car Corner/Rectangle Representation

As investigated by previous projects  (Culcheth, 2006 and Carter, 2007), 

the  representation  of  each corner  of  the car  is  possible.  This  adds  additional 

accuracy over the standard model, since collision detection is improved. However, 

this is difficult to model as detection of the corners is not perfect as noted by 

Culcheth  (2006).  The  simulation  included  in  Carter's  project  uses  this 

representation, but does no image analysis so is able to make use of the exact 

precision of the simulation.

Chosen Solution

The use of a single centre point was determined to be the best way to 

represent the car.  This was to simplify  the rule based navigation system and 

collision detection, as well as the navigation around the track route.

The method used to find this centre point and therefore location of the car 

Andrew Armstrong – A449326 28



Computer Controlled Car Racing Evaluation of Coding Methods

was based on a frame differenced, threshold image of the car being picked up as 

green as shown in figure 13.

This  image  was  scanned,  using  the  previously  obtained  track  limits  to 

speed up the search. Each pixel which was green had the 6x6 pixel area around it 

searched for green.  The highest  count was determined to be part of  the car. 

Around this chosen point, the coordinates of all the green in 34x34 pixel area are 

averaged, and this new average coordinate should be the car centre. Figure 37 of 

Appendix A lists the initial car search algorithm.

After the car had been found once this was optimised so that it searched 

for the nearest collection of 20 pixels in a 6x6 pixel area, checking first where the 

last recorded car position was. Figure 22 below shows the location of the car as a 

red dot.

Figure 22 – Location of the car (red dot), front of the car (blue dot) and 

next waypoint (pink dot) are shown on the debug image.

Once  this  was  found,  the  car  facing  must  be  determined.  The  method 

chosen was to search for a specific colour attached to the front of the car. Since 

the car was yellow, the colour red was chosen. This required the use of the live 

camera image unaltered, and a new algorithm that detects the average location 

of red pixels within a 26x26 area around the centre of the car was implemented. 

This is  location that  is  found is  shown as blue on figure 21. Additionally,  the 

previous  method  used  by  Culcheth  (2006)  to  detect  the  cars  location  by 

extrapolating from the previous location was used as a backup to this method. 

The problem was that reverse commands caused it to think the back of the car 

was the front, so it was used as last resort by the system.

Andrew Armstrong – A449326 29



Computer Controlled Car Racing Evaluation of Coding Methods

The choice of what red object to use on the front of the car was highly 

tested, and is noted in the Testing section later on.

Driving AI
The core DrivingAI class was written as an interface between the decision 

making NavigationAI class and the parallel port commands. It would handle the 

start, stop, pausing of the AI system and use appropriate PWM code to cause the 

car to move.

The base class was written in a similar implementation to Carter's (2007) 

original DrawSim thread. This thread was started or stopped as dictated by the 

users of the system, or if  the code was in a condition to end. There was the 

possibility of making it a simpler single threaded system, but this renders the 

camera unusable since it requires CPU time to receive new images for the system 

to use. The actions performed in the threaded loop can be seen in Appendix B, 

which shows a flow diagram of the loops main actions.

The controls added to allow the thread to run were Start AI, Pause AI, and 

STOP AI. Their location is detailed in Appendix D.

Car Control Mechanism

The control of the car was fully investigated in previous projects (Culcheth 

2006,  Carter,  2007),  and  so  did  not  need  further  work.  The  main  control  is 

provided  by  interfacing  with  a  parallel  port  class  created  by  Culcheth,  which 

interacts directly with the remote control used for the car.

The controller can be sent on/off signals to command the car so it moves 

forward or backwards, and turns left or right. The signals directly map to pins on 

the parallel port, shown in figure 23 below.

Andrew Armstrong – A449326 30



Computer Controlled Car Racing Evaluation of Coding Methods

Byte
(binary)

Coded Byte
(0x denotes hex)

Parallel Port Pin(s) 
activated by byte

Instruction

Car 
1

0000 0001 0x01 Data Pin 0 Left
0000 0010 0x02 Data Pin 1 Right
0000 0100 0x04 Data Pin 2 Forwards
0000 0101 0x05 Data Pins 0 and 2 Forwards, 

Left
0000 0110 0x06 Data Pins 1 and 2 Forwards, 

Right
0000 1000 0x08 Data Pin 3 Backwards
0000 1001 0x09 Data Pins 0 and 3 Backwards

, Left
0000 1010 0x0A Data Pins 1 and 3 Backwards

, Right
Car 
2

As above, 
shifted 4 
bits left

Range 0x10 to 
0xA0

Data Pins 4 to 7 As above

Both 0000 0000 0x00 None Off (Stop)
Instructions for both cars can be sent together (e.g. 0010 0101 means Car 
1: Forwards & Left, Car2: Right)

Figure 23 – Table of parallel port pins, against actions. (Source: Carter, 

2007)

The  car  is  controlled  using  Pulse  Width  Modulation  (PWM)  by  these 

controlled. This turns on the control for a specified time, then have it off for a 

specified  time.  Using  PWM allows  fine  tuned  control  of  the  car,  and  for  the 

purposes of  the  design,  adds  reliability  and  control  at  the  sacrifice  of  speed. 

Figure 24 shows an example PWM execution.

Figure 24: Example PWM execution (Source: Culcheth, 2006)

In addition Carter (Carter, 2007) implemented a parallel port viewer GUI to 

show what commands are being sent to what pins. This was kept in the program 

to allow debugging of commands being sent to the car if needed.

Andrew Armstrong – A449326 31



Computer Controlled Car Racing Evaluation of Coding Methods

Navigation AI
The  base  class  to  handle  navigation  decision  making  first  required  the 

implementation  of  prototype  decision  making  before  the  route  planning  was 

implemented. In addition, the class was created to interface with the models of 

the car and track. These were added when the class was created, with setup, 

initialization  and update  functions  that  the  DriverAI  class  could  operate  with. 

Public variables were used to store the action that was chosen to be performed so 

the DriverAI could operate the parallel port. This segregation of decision making 

and operation allowed much cleaner interaction between classes instead of using 

a single huge class to do all the work.

The navigation rules themselves were implemented and evaluated after the 

route  planning,  and  are  described  further  on  in  this  section.  Additionally  for 

debugging, the last 100 located car points were stored once the car and track 

classes were integrated,  and are available  to show on the GUI as the button 

“Display Past Points”.

Track Route Planning System
There are several methods for determining the right direction to go around 

the track. Investigations were made into three potential methods, noting that the 

system did not need to learn and that the actual method of route navigation only 

had to be reliable enough for the rules to interact with.

Track Regions

Dividing the track up into regions which need to be traversed in order is a 

simple method to show the car a new place to get to. However, the method to 

determine the best route between each location still requires more work. Since 

the regions must cover all of the track, the usual way is to divide the track into 

quarters. This doesn't take into account the turning circle or control of the car, 

and it would be very difficult to optimise the route by any degree.

Simulated Route

There is the possibility of using Carter's (2007) simulation route code, and 

having  the  car  analyse  and  use  the  route  where  possible.  However,  this  is 

problematic since the list of instructions is very long and exact, meaning if the 

rules missed a turn it might be difficult to follow the route any further. While it is 

Andrew Armstrong – A449326 32



Computer Controlled Car Racing Evaluation of Coding Methods

good to have an optimised route for not crashing into the walls, it is difficult for 

the car to follow it using anything but the instructions themselves.

Waypoints

Setting up a series of waypoints allows the car to race towards a point 

then, once it has reached it, move on to the next one. The system also allows the 

manual placement of waypoints, simplifying the route choosing solution. As long 

as the system can detect when a waypoint is passed, forward movement should 

always be the main aim since the car essentially is following breadcrumbs around 

the track.

Chosen Solution

This decision was made to go with Waypoints after discussion with Dr Chris 

Hinde during during meetings. The situation requires only basic route planning, 

and no optimisation during the race itself. Since the track is static, and waypoints 

are easily added to the existing model system using the Coordinates class, it is 

the most simple to implement.

Iterative testing described in the Testing section further on shows that the 

placement  and  frequency  of  the  waypoints  was  very  important.  The  final 

waypoints chosen for the system to use are shown in figure 25 below.

Figure 25 – Final waypoints in pink

The waypoints  were stored in  an array of  coordinates.  The Track class 

stored the required methods to find the initial waypoints locations, based on the 

track  walls  and  obstacles,  and  to  decide  if  the  car  had  reached  the  current 

waypoint yet. This was done by a distance check from the waypoint to the cars 

Andrew Armstrong – A449326 33



Computer Controlled Car Racing Evaluation of Coding Methods

location every navigation update.

Navigation Rules Implementation
The navigation rules were determined to be the best method to implement 

navigation AI.  While learning methods were investigated by Carter  (2007),  he 

remarked that any learning system to be implemented needed several pieces of 

work, such as image analysis, to be achieved. Therefore, it was determined that 

learning AI would be out of the scope of the project. Instead, rule-based AI with a 

simple set of rules would be a workable solution to solving the aim.

Collision and Crash Detection

To detect walls and the obstacles, there are a few methods of analysis to 

find them around the car. However, many of these were investigated already by 

Culcheth (2006). His recommended solution was to use extrapolation to find what 

was around the car.

Extrapolation is a simple method at determining if a obstacle is in a certain 

direction is to extrapolate a certain distance, or up to a certain distance, checking 

if points on the line hit an obstacle. This is relatively quick to perform, and can 

usually provide reliable results. Appendix A lists the algorithm used for this, and 

Appendix C lists the angles that are checked for obstacles. Each pixel is checked 

against the barriers, chicane and walls by the Track class.

Once this is completed, the navigation rules have most of the information 

required  to  determine  the  next  action.  The  final  piece  of  information  is  the 

location and direction to the current waypoint, so the application of rules can aim 

to get towards that point.  This is detailed in the Track Route Planning section 

previously.

Navigation Rules

The navigation rules themselves deal with the aim of heading directly into 

the next waypoint. It always should try to make progress directly towards the 

location, turning as needed.

If the car is not facing the waypoint location, the set of rules generally will 

try to do a 3-point-turn driving manoeuvre, allowing the car to be turned fully 

around  if  they  are  facing  the  opposite  direction.  Since  this  would  take  many 

Andrew Armstrong – A449326 34



Computer Controlled Car Racing Evaluation of Coding Methods

different iterations of the rules, to achieve this without infinite loops the number 

of  rules  are  limited.  The general  aim,  since the  direction  around the  track is 

clockwise, is also to reverse left, or go forwards right as much as possible.

The full rules in the code are listed in figure 38 of appendix A. Generally, 

the rules below in figure 26 are followed, although the code takes into account 

situations when the rule's result cannot be performed by taking into account if it 

can go that direction.

Rule Condition Rule Result

Facing a Wall

Car is facing the opposite direction to 
the waypoint

Go backwards, left

Car is facing the waypoint Go backwards, left or right

Car is to the right of the waypoint Go backwards, right (to turn forwards 
left later)

Car is to the left of the waypoint Go backwards, left (to turn forwards 
right later)

Standard Navigation

Car is facing the opposite direction to 
the waypoint, but more to the right

If we can reverse, go backwards right, 
else go forwards left

Car is facing the opposite direction to 
the waypoint, but more to the left

If we can reverse, go backwards left, 
else go forwards right

Car is facing waypoint Move straight forwards

Car is facing to the right of the 
waypoint

Move forwards, left

Car is facing to the left of the waypoint Move forwards, right

Final resort

All other rules fall through Reverse backwards, left

Figure 26 – Table of navigation rules

One problem encountered was that if a point is seen to be behind a barrier, 

the rules cannot cope with navigating around the barrier since it always attempts 

to go directly into the point. As noted in the Testing section, additional waypoints 

were added to achieve better results when navigating the track.

PWM Control Implementation
While the parallel port control had been implemented previously, the actual 

Andrew Armstrong – A449326 35



Computer Controlled Car Racing Evaluation of Coding Methods

length of the pulses used required some evaluation once the rules were sorted. 

After testing as noted in the Testing section, the final values for the pulses were 

best determined and are shown in figure 27.

Movement Pattern Speed

Forwards, left or forwards, right 150 milliseconds

Forwards, straight Half the forward milliseconds.
Total: 75 milliseconds

Reverse (any direction) +50 Milliseconds on top of forward 
speed.
Total: 200 milliseconds

Figure 27 – Table of PWM action speeds

Update and Processing Speed

For a variety of reasons, the update and processing speed used by the 

system was set to a recurring interval of 700 Milliseconds. This was to achieve the 

fastest possible update time, but with these points in mind:

● The lab computer system was tested for speed and the processing took on 

average 200 milliseconds to do required work, but could take longer, up to 

300 milliseconds in some cases.

● At least 100 milliseconds were required to send a sufficient pulse to the 

car to produce required movements.

● Additional time was required to slow down this movement or have it stop 

entirely, since as noted during the car modelling, the front of the car might 

blur at high speeds, making the front of the car difficult to find accurately 

due to motion blur on the camera.

● The aim of the system was not to produce a fast result but an accurate 

one. While faster speeds could be achieved, the above points would render 

it less accurate or prone to mistakes.

Therefore, after testing as noted in the Testing section, the 700 millisecond time 

with  the  overhead  of  300  additional  milliseconds  allowed  a  new action  to  be 

chosen roughly every 1 second. In practice, this is frequent enough so navigation 

of the entire track takes no more then two minutes. To allow the system to make 

faster decisions without mistakes, improvements to the car facing algorithm, and 

Andrew Armstrong – A449326 36



Computer Controlled Car Racing Evaluation of Coding Methods

an upgrade to the lab computers would be necessary.

Andrew Armstrong – A449326 37



Computer Controlled Car Racing Testing

Testing

Incremental White Box Testing
Work on testing the design of the system started in an incremental feature 

by feature basis, since the system was designed around incremental addition of 

features to the existing program by Carter (2007).

As  noted  in  the  design  outline,  each  part  of  the  system  had  several 

different possible solutions. Generally each were tested for appropriateness until 

the most satisfactory solution was obtained.

The early design and testing resolved around making the GUI suitable for 

additional  controls  and  resizing  the  existing  simulation  display.  Particular 

attention  was  made  to  separating  the  integration  of  GUI  code  from  the 

simulation, and put into it's own engine class.

With  this,  necessary  methods  that  would  require  work  later  on  were 

prototyped with empty data and methods. This included the image processing and 

modelling classes.

During the  incremental  design  of  features,  there  were several  complex 

sections to work on. The first complex feature to test was the image processing to 

gather the location of the car. While the track was easy to pick out and a solution 

was easily found, with appropriate image analysis work done by Culcheth (2006) 

added to the system, the system design required the cars location and facing to 

always  be  accurately  known for  navigation.  Previous  projects  had  only  got  a 

simple set of algorithms to find the car and it's facing from the past location, 

which would not work when tested since reversing caused it to record the facing 

as entirely the opposite way and the accuracy was poor.

To accurately  find  the car,  it  was determined the image threshold  and 

frame differencing method was sound, but accuracy was hindered since the car 

itself had black windows and featured. The method used was to find the average 

point of all the area detected as the car, and so with the black features being 

detected as track, the centre of the car moved depending on which was it was 

facing and which windows were visible to the camera. This was solved through 

the application  of  paper  to  cover  the black  features,  improving  the  accuracy. 

Initially, this was a flat piece of paper stuck onto the roof of the car. After it was 

Andrew Armstrong – A449326 38



Computer Controlled Car Racing Testing

found that at certain angles, the car appeared to be much bigger then usual, so 

applying the paper as a cover over the car and it's black features allowed better 

accuracy, as shown in figure 28 and figure 29 below.

Figure 28 – White paper

Figure 29 – White Paper applied to 

car

Additionally, several iterations of testing went into finding the cars facing. 

Firstly testing was done on the possible solutions until picking up a colour on the 

front of the car was chosen to be the most suitable method. Then, a large amount 

of testing went into making this both accurate and reliable. The main problem 

encountered was the fact the initial  testing with a Duplo Lego brick proved a 

problem when light directly reflected off it's shiny surface. The brick is pictured in 

figure 30 below, with some ambient light reflecting off it's surface despite not 

being positioned directly under a light.

Andrew Armstrong – A449326 39



Computer Controlled Car Racing Testing

Figure 30 – Duplo Lego block, note the shiny surface

A matte surface was required, big enough to be detected by the camera. 

Using a red marker on paper, with two different pressures, provided a matte 

surface to use. The final solution was to have one put underneath the other, since 

the larger piece of paper was too shiny in the middle, but provided an accurate 

edge to the smaller piece which was fully matte. Figure 31 and 32 shows the final 

paper used, and applied to the front of the car.

Figure 31 – Matte Red Paper Figure 32 – Red paper applied to the 

front of the car

The final iteration of testing was on the control of the car and rules used 

for navigation. The basic controls used to command the car were available in the 

project already from the work by  Culcheth (2006) and Carter  (2007). However, 

the rules and timings for navigation were not complete in any previous project, 

and so had to be tested thoroughly. The basic pulse width modulation was used, 

but it was noted over testing that the reverse movement of the car provided less 

Andrew Armstrong – A449326 40



Computer Controlled Car Racing Testing

thrust then forwards motion for the same amount of pulse time. This meant the 

pulse  time  given  for  reverse  commands  was  doubled,  to  allow  a  reasonable 

amount of movement from every choice of forwards or backwards.

In addition, the decision of what action to take was first attempted every 

frame, which locked up the program requiring it to be slowed down to roughly 

every  second.  This  in  fact  benefited  the  design  since  tracking  the  car  was 

inaccurate when moving fast as the image blurred, making the car appear larger 

then normal and the detection of red was made more difficult. The delay allowed 

each pulse to finish before a new one was decided.

Finally, the last complex iterative testing was on the rules used to navigate 

the track and recover from crashes. These took some time to accurately sort out. 

Initially, the rules worked on the basis of knowing the number of pixels (and thus 

roughly the distance) to the nearest obstacle directly in front, behind, left and 

right of the car. These were partially accurate, especially at determining whether 

to reverse or move forward, but proved poor at judging if it could turn left or 

right and not hit anything, resulting in cases where it repeatedly tried to move 

into an obstacle it could avoid.

This  was  solved  by  the  additional  detection  lines  at  angles  roughly 

equivalent  to  where  the  car  would  be  when  going  left  or  right.  With  these 

available,  new  conditions  based  on  them,  such  as  if  there  was  an  obstacle 

forwards  and  to  the  left  of  the  car,  were  added,  so  it  could  not  go  in  that 

direction. Appendix C shows the angles used for this collision detection.

The last iterative testing came from the chosen method of route planning, 

the  waypoint  system.  This  was  based  entirely  on  the  manual  creation  of 

waypoints that the car had to navigate. At first, four waypoints were used, at the 

four main gaps in the track. Assuming a clockwise track direction, the number 

identifying them incremented until the last point, which was where the car started 

from. The first point was always right of the starting position in all the choice of 

waypoints. These initial waypoints are seen in figure 33 below.

Figure 33 – Initial waypoints.

Andrew Armstrong – A449326 41



Computer Controlled Car Racing Testing

The  initial  four  waypoints  did  function  in  some  key  ways  but  were 

inefficient.  The car  usually  managed to  navigate  without  crashing to  the  first 

point,  but  due  to  the  small  gap  between  the  track  and  the  middle  barrier, 

sometimes got stuck when turning into the first point, causing it to reverse, and 

try and then go through the barrier. It rarely completed a full track lap.

Therefore, more navigation points were added, to make the car follow a 

similar path found by Carter (2007) to be an optimal one for navigating the track, 

with the possibility of no crashes. An additional five points were added to the top 

and bottom areas of the track, to allow the car to follow a more optimal path and 

to not direct themselves into an obstacle after reaching a point. In addition, while 

tuning the location of the waypoints, the area which the car was detected to have 

reached a waypoint was increased and decreased by various amounts, improving 

the accuracy. The final waypoints when fully tested are displayed in figure 25.

Andrew Armstrong – A449326 42



Computer Controlled Car Racing Testing

Global System Testing
With the system at a functional state with all  components implemented 

separately, the system as a whole required testing to see if it completed several 

necessary tests to complete the aim of the project.

The testing aimed to complete what was originally set out in the aim; to 

successfully  navigate  the  track without  human intervention.  A  set  decision  to 

achieve 10 track laps was the core aim since this was the guidelines setup in the 

CEC  competition  and  also  researched  as  a  good  target  in  previous  projects 

(Culcheth,  2006).  Additionally,  there are several tests to check the navigation 

when manually put in a crash position.

For the track laps, the system required an additional report on how many 

laps it had completed, which was implemented into the waypoint system. The 

crash recovery required that the system have a way to choose the next waypoint 

to reach. This meant that when the system is started, the AI could be on any part 

of the track and so long as the user has chosen an appropriate waypoint to move 

to next, it will do it's best to do so. In addition, an option to have it stop when it 

is facing or has reached the point in question was added, speeding up the testing. 

This option was called “Crash Test Only” and added to the options panel.

Battery Charge Conditions

As  noted  in  previous  projects  (Culcheth,  2006  and  Carter,  2007),  the 

performance of the car deteriorates when the batteries start to lose charge. Since 

this was a known problem, tests were done with rechargeable batteries which had 

less then 15 minutes of use. An additional check on the performance while at low 

battery was done, and navigation did suffer since the rules were tested on well 

charged batteries.

Test Conditions

The laps were all started from the initial start position shown in figure 34, 

which is marked on the track so the same position could be used each time.

Andrew Armstrong – A449326 43



Computer Controlled Car Racing Testing

Figure 34 – Car in start position

The crash tests were done in the top left section of the track. This was 

deemed the most complex area to navigate after some initial investigation, and 

having the same area tested allowed comparisons to be made directly between 

the test cases. The car always aims during the crash tests to face or go over the 

car's starting location directly between the chicane and the barrier, and due to 

the addition of a “Crash Test Only” option will stop when this is achieved.

Testing Results

The tests and the results from them are detailed in table shown in figure 

35 below. All the crash tests had recorded shots of the start and end position 

recorded in Appendix E. A recordings of one of each test was made, and are 

available on the project CD.

Each test was run 3 times, allowing for any possible errors to be spotted if 

one run of the test failed while the other passed.

Andrew Armstrong – A449326 44



Computer Controlled Car Racing Testing

Test Result Notes

Lap Tests

Completion of 1 full track 
lap

All completed 
Successfully

No intervention was made, lap 
completed successfully.

Completion of 10 laps All completed 
Successfully

No intervention was required to 
complete all 10 laps.

Crash Tests

Facing Top Left Corner 
Test

All completed 
Successfully

Correctly faced towards waypoint

Facing Left Wall All completed 
Successfully

Correctly faced towards waypoint

Facing Top Wall All completed 
Successfully

Correctly faced towards waypoint

Facing Barrier All completed 
Successfully

Correctly faced towards waypoint

Facing Chicane All completed 
Successfully

Correctly faced towards waypoint

Facing Chicane and Wall 
Corner

All Failed Stuck trying to reverse through 
barrier, with chicane directly in front 
of it. Did not succeed at facing the 
waypoint

Figure 35 – Test results table

Testing Evaluation

While most of the tests completed successfully, a problem occurs with one 

crash test, leading the system into an infinite loop. This problem obviously was 

not found during the iterative testing, and shows that the crash recovery, while it 

works for most of the general cases, can fail with some specific ones.

However, the test case used, facing the corner between the wall and the 

chicane, is unlikely to happen during an actual race due to the direction of travel. 

When the log is checked, the reason for the flaw is shown to be the navigation 

rules executing a reverse action since it decides the chicane directly in front of it 

is in the way. It in fact cannot reverse but it is the last given rule, and so is 

executed regardless. Error checking for this condition should have been added, to 

at least stop the system when it cannot navigate according to the rules given.

Overall however, the tests can be considered a success since apart from in 

some specific areas of the track, the car can navigate around successfully and get 

out of known crashes.

Andrew Armstrong – A449326 45



Computer Controlled Car Racing Conclusions

Conclusions

Project Successes
The most significant success in the project is the fulfilment of the aim to 

have the car traverse the track without human assistance, achieving the aim of 

10 laps successfully. While the previous project (Carter, 2007) achieved the this 

aim successfully,  the recovery from various crash positions,  and avoidance of 

crashing if it happens, has proved to be a major accomplishment. Now the car 

can perform 10 laps of the track, or more, without human assistance. Compared 

to the 2005 winning entry into the CEC event by Ivan Tanev  (Essex, 2005ii), 

which uses a car with a tighter turning circle, it navigates correctly making good 

use of reverse and is a good solution to the problems put forwards regarding 

navigation.

While the car, under testing, did rarely get caught in an infinite loop of 

recurring instructions while testing the crash routines, the fact that it achieved 10 

laps with no human assistance and additionally could start at nearly any location 

(navigating out of crash situations in the mean time) and navigate around makes 

this project very successful in archiving its core aim.

Additionally,  the  program  implements  several  accurate  image  analysis 

techniques  and this  data  is  put  to  good use.  The success at  finding the cars 

location  and  facing  for  each  new  decision  was  not  accomplished  in  previous 

projects and therefore is the first year to achieve such accuracy.

The project also provides a good system for building future improvements 

on  to.  The  simulation  created  by  Carter  (2007) is  still  integrated  into  the 

program, which could be taken forwards. Small modifications to the design mean 

that more systems could be added to improve the system and implement more 

required features as needed.

Project Improvements
While  the  project  achieves  it's  aims,  there  were  some  possible 

improvements when reviewed.

The waypoint system could have been implemented in a more reliable way, 

since it required several tests to fine tune the performance of the manually placed 

Andrew Armstrong – A449326 46



Computer Controlled Car Racing Conclusions

locations. Sometimes the navigation still suffers if it misses a waypoint, and has 

to  turn  around  to  get  near  enough  to  it,  meaning  the  car  faces  the  wrong 

direction for the waypoint after it. If the system was implemented earlier, a set of 

rules to govern if a waypoint has been “passed” near enough would be beneficial, 

allowing the car to continue forwards rather then backtracking to a point it barely 

missed.

The crash recovery could have been perfected with the addition of more 

rules to the navigation system. This would have likely solved the failed test case 

and improve the systems reliability, at the expense of a lot more iterative testing 

time.

The navigation system itself also runs at a required low speed to retain 

accuracy. Updates are done every second or so, making the car movement slower 

then necessary. If the system had additional testing and functionality to detect 

movement  in  progress  and  prediction  of  where  the  car  would  end  up,  more 

frequent updates could provide a constant stream of movement rather then small 

pulses of it.

Personal Achievements
The project has provided a great deal of opportunity to learn several new 

techniques in a large Java project including the use of Threads, class interactions, 

and object orientated design, as well as further improving previous knowledge of 

the language. Additionally the knowledge of image processing and using models 

to store information, and on the control of the car by PWM was gained.

Andrew Armstrong – A449326 47



Computer Controlled Car Racing Future Work

Future Work

Control Improvements
The current PWM timing is functionally slow, since it waits for a command 

to finish until analysing the car to perform the next command. This delay adds a 

long amount of time onto lap times, and although very reliable, is not fast. It 

could be improved greatly  by the use of  constant  speed to move around the 

track, and the use of more frequent updates to control the car more effectively.

Alternative Track Layouts
Additional track layouts could be created, with an aim to have the internal 

model adapt to any new track layout presented to it with a general algorithm, 

since the current modelling can only apply to the specific track within this project.

Navigation Improvements
The use of manually placed waypoints, while reliable are not optimised for 

speed. There could be huge improvements to lap times by finding a suitable way 

to have the car navigate around the most optimal path.

Multiple Cars
A second car could be added since there are two Nikko cars in the range, 

which  have  different  frequencies  of  40Mhz  and  27Mhz.  The  parallel  port  has 

support for a second car, and if image processing is applied to determine which 

car is which, the system could find the car which it is controlling to navigate the 

track correctly, avoiding the other car as needed.

Completion of Simulation
The simulation started by Carter (2007) is incomplete, but still functional in 

the system. This  could be improved with the addition  of  reverse actions.  The 

simulation then could be used to test for the best track navigation or to simulate 

the track and navigation within it without the need of the car itself.

General Improvements
The user interface could be improved with more clear controls,  and the 

removal of unused sections such as the background subtracter which isn't used in 

Andrew Armstrong – A449326 48



Computer Controlled Car Racing Future Work

the system. The choice of the current waypoint to get to could be implemented in 

a drop down box, since currently a button must be pressed to cycle them. Since 

the waypoint system is static, allowing the GUI to be used to set or move the 

location of them would be highly useful as well.

In addition, speed controls would be useful for controlling the update speed 

of the AI, especially for testing.

Final Conclusions
With navigation of the track without human assistance, including recovery 

from crashes,  the project  is  a  great  success.  The system has  a very  reliable 

internal  model  and  image  processing  techniques,  and  makes  use  of  good 

navigation rules with a simple waypoint system.

Additional  development  should  result  in  optimal  navigation  of  the  car 

around the track, allowing fast lap times and other improvements such as the 

addition of a second car to race against.

Andrew Armstrong – A449326 49



Computer Controlled Car Racing References

References

Barnard, C Loughborough University, 2007-2008
Personal Communication.

Bull, D. 2004
Java Colour Tracker
Available at: http://www.uk-dave.com/projects/java/colour_tracker.html
Consulted on: 02/05/08

Carter, C. Loughborough University, 2007
Computer Controlled Car Racing [2007 project]

Culcheth, S. Loughborough University, 2006
Computer Controlled Car Racing [2006 project]

HO, D, 2008
Notepad++
Website: http://notepad-plus.sourceforge.net/uk/site.htm
Consulted on: 04/05/08

Hinde, C. Dept. of Computer Science, Loughborough University, 
2007-2008
Personal Communication and initial project creation

Margold, M, 2004
Download source of Parallel Port Viewer Java application source code
Website: http://www.planet-source-code.com/vb/scripts/ShowCode.asp?
txtCodeId=4309&lngWId=2
Consulted On: 04/05/08

Portillo, J. 2005
ParPort Java package
Available at: http://www.geocities.com/Juanga69/parport/ 
Consulted On: 04/05/08

Mee, R. Dept. of Computer Science, Loughborough University, 2005
Parallel Port Controller Construction

Sun Microsystems, 2004
Java Media Framework Version 2.1.1e
Website: http://java.sun.com/products/java-media/jmf/index.jsp
Consulted on: 03/05/08

Sun Microsystems, 2006
Java Platform Standard Edition 6 API Specification
Website: http://java.sun.com/javase/6/docs/api/
Consulted on: 03/05/08

Andrew Armstrong – A449326 50



Computer Controlled Car Racing References

Tanev, I. Doshisha University (Japan), 2005
Winner of 2005 CEC Racing Cars Competition
Website: http://isd-si.doshisha.ac.jp/itanev/   
Consulted on: 04/05/08

University of Essex, 2005(i)
CEC 2005 Car Racing Competition
Website: http://algoval.essex.ac.uk/cec2005/race/race.html
Consulted on: 02/05/08

University of Essex, 2005(ii)
Video of winning entry of 2005 CEC Racing Cars Competition (provided by Tanev, 
I)
Available at: http://algoval.essex.ac.uk/cec2005/race/race.html
Consulted on: 02/05/08

Andrew Armstrong – A449326 51



Computer Controlled Car Racing Appendices

Appendices

Appendix A: Key Code and Formulae

Projected Point

To get a projected point along a line, given an angle or two points this 

algorithm is used.

Andrew Armstrong – A449326 52

A

B

C

pixels amount of
distance forward from B

angle in degrees 
between A and B

or
angle in degrees
facing from B 

C.x = B.x + (pixels * cos(angle))
C.y = B.y + (pixels * sin(angle))

Point A's coordinates
are optional if the angle

projected from B is known



Computer Controlled Car Racing Appendices

Key Code Samples

Horizontal Scanline Algorithm

Note the Vertical version is exactly the same, but reverses the X and Y 

inputs. 

Figure 36: Horizontal Scanline Algorithm. Note logging functions have 

been removed to improve code clarity.

Andrew Armstrong – A449326 53



Computer Controlled Car Racing Appendices

Find Initial Car Location

Andrew Armstrong – A449326 54



Computer Controlled Car Racing Appendices

Figure 37 – getCarPosition. Note some logging has been removed to 

clarify the code.

Andrew Armstrong – A449326 55



Computer Controlled Car Racing Appendices

Navigation Decision

Andrew Armstrong – A449326 56



Computer Controlled Car Racing Appendices

Andrew Armstrong – A449326 57



Computer Controlled Car Racing Appendices

Andrew Armstrong – A449326 58



Computer Controlled Car Racing Appendices

Andrew Armstrong – A449326 59



Computer Controlled Car Racing Appendices

Figure 38 – navigateDecision - Navigation decision code and rules

Andrew Armstrong – A449326 60



Computer Controlled Car Racing Appendices

Appendix B: Driving AI Loop Flow Diagram

Andrew Armstrong – A449326 61

1. Begin Driving AI
Frame Loop

2. Has “STOP AI” button
been pressed?

3. Update Navigation AI to
get new car location

4. Was the car Found?9. Wait for 
remaining frame time

No

Yes

Stop Loop

6. Make Navigation AI decide
on new action to perform

7. Has the Navigation AI chosen
a valid action?

8. Make the car do the chosen
action for a certain amount

of pulse time

No

Yes

No

Yes

5. Is crash recovery only on?

5a. Do we consider
ourselves at or
facing the next

waypoint?

Yes

No
No

Yes



Computer Controlled Car Racing Appendices

Figure 39 – Driver AI Loop flow diagram

Andrew Armstrong – A449326 62

Key

Action Decision Termination



Computer Controlled Car Racing Appendices

Appendix C: Object Detection Angles

Figure 40 – Diagram to show the angles which detect barriers in the path 

of the car

Andrew Armstrong – A449326 63

Car

Left
270°

Front
0°

Front Left
330°

Right
90°

Back Right
150°

Back Left
210°

Front Right
30°

Back
180°



Computer Controlled Car Racing Appendices

Appendix D: GUI Functionality

Figure 41 - Final GUI with numbered identification

Andrew Armstrong – A449326 64

1 2 3 4

6

5

7

8

9

10

11

12 13



Computer Controlled Car Racing Appendices

1. Simulation Interface – Scale is 1px:4mm

2. Primary Camera viewing panel (Live camera)

3. Secondary Camera viewing panel (Static camera / debugging image)

4. Simulation controls. These are set to enabled or disabled depending on the 

simulation state.

a) Start Simulation – Starts the simulation

b) Stop Simulation – Stops a running simulation

c) Reset – Resets the simulation that is running

5. AI Controls. These are set to enabled or disabled depending on what the 

AI state is.

a) Setup AI – Sets the AI up ready to run and finds the track

b) Start AI – Starts the AI, so it finds the car and proceeds to navigate

c) Pause AI – Pauses the AI loop. It  can be resumed by pressing the 

button again (it is renamed “Resume AI” when it is pressed)

d) STOP AI – Stops the running AI immediately

e) Display Past Points – Displays the last 100 tracked locations the car 

has been found at.

f) Increment  Starting  Point  –  Increments  the  waypoint  that  the  car 

should aim to get to

6. Run Options. These provide a set of options for the simulation and AI.

a) Simulation  Drives  Car  –  If  turned  on,  the  simulation  will  run  the 

instructions on the car controller in addition to the simulator.

b) Stop Simulation on Collision – Will stops the simulation if it goes into a 

barrier when turned on.

c) Detailed Log Info – Provides in depth logging information to the debug 

panel.

d) Save Log to file – When turned on, will save the log entries to a log 

file.

e) Crash Recovery Only – When turned on, once the AI faces or reaches 

the next waypoint, the AI will stop running.

7. Simulation Key. Logging will output A, B, C, and D locations of the car, 

which are shown in this diagram.

8. Parallel Port Data Pin Monitor. Shows the current parallel port actions.

9. Test buttons. These cause debug and test functions to be called.

10.Car  Track  Coords  Log.  Car  location  coordinates  are  displayed  in  pixels 

here.

11.Debug Information Log. Shows debug information on what the system is 

Andrew Armstrong – A449326 65



Computer Controlled Car Racing Appendices

doing.

12.Camera Control Buttons Panel.

a) Turn On/Off Camera – Turns the live web camera feed on or off.

b) Save Live PNG Image – Saves the current live webcam frame to a PNG 

file.

c) Save Reference Image – Saves a copy of the current static  camera 

image for use in the image controls

d) Save Static PNG Image – Saves the current static camera frame to a 

PNG file.

e) Load Image – Loads a file from the computer and puts it in the static 

image location.

13. Image Controls

a) Threshold Sliders – Allows the control of what threshold RGB settings 

are used.

b) Threshold Image – Does a sample threshold analysis of the current live 

webcam image frame

c) Background  Subtraction  Slider  –  Allows  the  control  of  the  image 

difference needed for background subtraction.

d) Background Subtraction – Performs a sample background subtraction 

between the current static image and a previously stored image (from 

the “Save Reference Image” button)

e) Frame Difference – Performs a single  frame difference between the 

current static  image and a previously stored image (from the “Save 

Reference Image” button)

Andrew Armstrong – A449326 66



Computer Controlled Car Racing Appendices

Appendix E: Crash Testing Results

Figure 42 – Corner Test - Start Figure 43 – Corner Test - End

Figure 44 - Facing Left Wall Test - 

Start

Figure 45 – Facing Left Wall Test - 

End

Figure 46 – Facing Top Wall Test - 

Start

Figure 47 – Facing Top Wall Test - 

End

Andrew Armstrong – A449326 67



Computer Controlled Car Racing Appendices

Figure 48 – Facing Barrier Test - 

Start

Figure 49 – Facing Barrier Test - End

Figure 50 – Facing Chicane Test - 

Start

Figure 51 – Facing Chicane Test - 

End

Figure 52 – Corner of Chicane Test - 

Start

Figure 53 – Corner of Chicane Text - 

End

Andrew Armstrong – A449326 68


